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ABSTRACT 
The Gurson-Tvergaard-Needleman (GTN) model is a material 
plasticity model in which the accumulation of ductile damage is 
represented by the nucleation, growth and coalescence of micro-
voids. The model has been implemented in full for the ABAQUS 
finite element code. The model supports fully the nucleation, 
growth, and coalescence of voids, and differs from the porous 
plasticity model provided in ABAQUS/Standard. 
 The GTN model is just one model from a particular class of 
pressure-dependent plasticity models in which the response is 
dependent on the development of the hydrostatic stress as well as 
the deviatoric stress tensor. A formal derivation of the 
constitutive equations is presented in this paper. It is shown that 
the model can be formally represented by a coupled system of 
four non-linear equations. A novel approach to solving the 
equations has been adopted based on a hybrid solution method 
and a trust region to ensure convergence. 
 The solution of non-linear equations in more than one 
variable is usually attempted using iterative methods. For the 
calculation of a material’s response, the method adopted must be 
sufficiently robust to ensure that the correct result is obtained at 
each of the material points in the component or structure being 
modelled. Moreover, the solution method must be as efficient as 
possible for practical use. In this paper, we present an 
implementation of a trust region method that allows the solution 
of the GTN constitutive equations to be derived with confidence. 
 The method utilises iterative corrections and a trust region 
surrounding the current estimated solution. In the early stages of 
the iteration, when the estimate may be far removed from the true 
solution, the steepest descent method is used to improve the 

solution, while at later stages Newton’s method, with its superior 
convergence, is used. A hybrid step (part steepest descent step, 
part Newton step) may also be taken using Powell’s dogleg 
method with the constraint that the corrections do not take the 
solution outside the current trust region. A measure of the quality 
of each step is used to shrink or expand the radius of the trust 
region during the iteration. 
 The solution algorithm has been implemented in Fortran 90 
as a user subroutine for ABAQUS/Standard. The method provides 
faster convergence than the porous plasticity model in ABAQUS 
and allows for the representation of void coalescence. Examples 
of application of the GTN model to study the response of axi-
symmetric bars are provided and comparisons are made with the 
porous plasticity model where appropriate. 
 
INTRODUCTION 
The Gurson-Tvergaard-Needleman (GTN) constitutive model 
[1-3] is an elastic-plastic model for the representation of ductile 
materials in Finite Element models.  In steels, ductile fracture 
occurs as a consequence of the nucleation, growth and 
coalescence of micro-voids. In the model, the micro-voids are 
represented by a continuous internal variable, the void volume 
fraction, . Ductile fracture is a multi-step process in which a 
number of micro-mechanical mechanisms occur concurrently: (i) 
micro-voids are nucleated by decohesion of second-phase 
inclusions, (ii) micro-voids grow due to plastic straining, (iii) 
localised diffuse necking occurs as micro-void coalescence 
begins, and (iv) fracture occurs caused by coalescence of micro-
voids and the tearing of the ligaments between them. In the early 
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stages of ductile fracture, macroscopic diffuse necking is usually 
observed; in the latter phases the material loses its stress carrying 
capacity and fracture occurs in macroscopic shear. 
 In the GTN model, the micro-voids are distributed 
continuously throughout the material matrix and the void volume 
fraction is a measure of local material damage. Continuum 
damage models like the GTN model are necessary for carrying 
out advanced assessments of engineering structures. Explicit 
modelling of the micro-voids is not usually practical because of 
the large difference in the structure and micro-void scales. 
However, numerical investigations into the effects of arrays of 
micro-voids have been undertaken and provide valuable insights 
into the influence of the micro-voids on the material behaviour 
[4-8]. The evolution of the void volume fraction includes 
contributions from the nucleation of new micro-voids and the 
growth of existing micro-voids. The coalescence of micro-voids 
is represented by including accelerated softening in the 
expression for the yield surface. An isotropic yield surface is used 
and the state of yielding depends on the generalised, von Mises 
stress, , the hydrostatic stress, eqσ mσ , and the void volume 
fraction. The GTN model is therefore a pressure-dependent 
plasticity model. 
 The model has been implemented as a Fortran 90 subroutine 
for use with the ABAQUS/Standard Finite Element code. The 
model has a number of additional features and offers an 
alternative to the built-in porous plasticity model in 
ABAQUS/Standard. As well as predicting the void volume 
fraction, the model calculates the microscopic equivalent plastic 
strain in the fully dense material, the partitioning of the elastic 
and plastic strains, and the stress in the material. Integration of 
the constitutive equations is carried out using the backward Euler 
method. The incremental forms of the rate equations are non-
linear and coupled together, and robust numerical techniques are 
required to solve them. This paper describes the incremental form 
of the GTN model equations and the method adopted for their 
solution. Example calculations are presented to illustrate the use 
of the model. 
 
CONSTITUTIVE MODEL 

This section describes the GTN constitutive model. The 
description is divided into three sections providing: (1) a 
description of the yield function and flow rule, (2) equations for 
stress and elastic and plastic strain increments, and (3) equations 
for the evolution of void volume fraction and equivalent plastic 
strain (the state variables of the model). Later sections will 
describe how the constitutive equations are solved. Expressions 
for the consistent Jacobian or linearisation moduli required for 
implementation of the backward Euler method are provided in the 
Appendix. 
 
Yield function and flow rule 

The GTN model has the following yield function  and an 
identical plastic potential 

Φ
g [1-3]: 
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=  is the hydrostatic stress, ijmijijS δσσ −=  is the 

deviatoric stress tensor, and ijσ  is the Cauchy stress tensor.1 The 

tensor  is the Kronecker delta tensor. ijδ
 The yield function has the following characteristics: 
 

• It reduces to the von Mises yield function when 
. 0* =f

• It varies linearly with  for *f 0=mσ , as in pure shear. 

• It depends on stress tri-axiality,  0σσ m , through a 
hyperbolic function, as suggested by Rice and 
Tracey [9]. 

 
Equation (1) was originally suggested by Gurson who carried out 
a limit analysis of a spherical cavity in a rigid plastic medium [1]. 
The constants ,  were introduced by Tvergaard to obtain 
better agreement with his study of localised shear band 
bifurcations using a periodic array of voids [2, 3]. Koplik and 
Needleman [4] found that the best predictions of growth and 
coalescence were obtained with  and 

1q 2q

25.11 =q 12 =q . 

 The yield stress 0σ  represents the radius of the yield surface 
and is assumed to be some function of the microscopic equivalent 
plastic strain in the undamaged material, ( )p

eqMεσσ 00 = . The 

Fortran 90 code allows the use of several functional forms for 0σ  
including power-law, modified Ramberg-Osgood, and look-up 
table forms. 
 When *f  is non-zero the hydrostatic stress effects the 
plastic flow as illustrated in Fig. 1. The solid curves are for 
Gurson’s original model with . The broken curve is 

the curve for  using Koplik and Needleman’s suggested 
constants. 
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Fig. 1. Effect of hydrostatic stress on plastic 

flow for different values of  *f
 
In Gurson’s original model, . A further modification by 

Tvergaard and Needleman [10] made  a bilinear function of 
 to account for the rapid coalescence of micro-voids at 

fracture. At low values of void volume fraction, , but 

above some critical void volume fraction  the value of  
increases more rapidly to give increased softening as the micro-
voids coalesce. In our implementation of  a plateau is added 

above the void volume fraction  at which fracture occurs: 

ff =*

*f
f

ff =*

cf
*f

*f

ff

                                                 
1 Indicial, tensor notation will be used consistently 
throughout this paper. 
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 Values of cf = 0.15 and = 0.25 are suggested in 

Reference [10]. The constant  is the value of  at zero 

stress so that as ,  and the material loses the 
ability to transmit stress. The plateau in Eq. (2) is required to 
ensure that the stress remains at zero once fracture has occurred. 
Setting  gives 

ff
*

uf *f

fff → **
uff →

0meq == σσ 1
* 1 qfu = . The constants must be 

such that  for accelerated softening to occur. fu ff >*

 Figure 2 shows the effect of coalescence on the plastic flow 
for five different values of hydrostatic stresses. These curves are 
plotted using  and = 0.15 and = 0.25. A rapid 

decrease in  occurs when the void volume fraction is above 

. There is no coalescence effect, however, if the hydrostatic 

stress exceeds 

121 == qq cf ff

eqσ

cf

( c
m fq

q 1
20

ln
3
2

−=
σ

)σ
  or about 1.265 in this case. 
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Fig. 2. Effect of coalescence on plastic flow 

for different values of hydrostatic stress 
 
The flow rule or normality rule for the plastic strain rate, by the 
application of the chain rule to Eq. (1), is: 
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where  is a positive scalar as the plastic deformation must be 
irreversible [11]. This is the incremental form of the rate 
equation: all rate equations in this paper will be written in 
incremental form as this is more convenient for our purposes. The 
flow rule may be written in terms of the deviatoric and 
hydrostatic plastic strain increments, 
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where the increases in the deviatoric plastic strain tensor  

and the hydrostatic plastic strain  are given by: 
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definition of the equivalent plastic strain rate [11], the increment 
in equivalent plastic strain is: 
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Eq. (5a) can therefore be written in the alternative form: 
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Eliminating the scalar ΔΛ  from Eqs. (5b) and (5c) results in the 
consistency condition: 
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Calculation of stress and elastic and plastic strain increments 
In a finite element calculation, the increment in the total strain 
tensor is passed to the constitutive model, which must calculate 
the stress and elastic and plastic strain increments. The total strain 
increment tensor ijεΔ  can be considered as the sum of  the plastic 

strain tensor  and the elastic strain tensor  increments. p
ijεΔ

e
ijεΔ

 
p
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e
ijij εεε Δ+Δ=Δ  (7) 

 
 The Cauchy stress at the end of an increment can be 
calculated by adding the product of the fourth-order elasticity 
tensor and elastic strain increment tensor to the stress at the start 
of the increment, 
 

e
klijklijij E εσσ Δ+= 0  (8) 

 
where, for isotropic elasticity, the elasticity tensor is determined 
by Hooke’s law: 
 

klijjlikijkl GE δλδδδ += 2  (9) 
 
where  and G λ  are Lame’s constants, related to Young’s 
modulus  and Poisson’s ratio E 21≤ν  according to 

( )( )ν+= 12EG , ( )( )ν213 −= EK ,  and ( )GK 32−=λ . 
 If an initial assumption is made that all of the strain 
increment  is elastic, an elastic prediction of the stress tensor 
at the end of the increment can be calculated using 

ijεΔ

 

klijklij
e
ij E εσσ Δ+= 0 . (10) 

 
This prediction will be correct if it gives a negative value for the 
yield function, 0<Φ  using Eq. (1). This indicates that the 
material is behaving elastically, which occurs when the material 
point is below the yield surface or moves off the yield surface due 
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to unloading. In such cases, the stress tensor is the elastic-
predictor stress tensor and the elastic strain increment tensor is 
the total strain increment tensor. Otherwise, the stress tensor must 
be obtained by subtracting the effect of the plastic strains from 
the elastic prediction. As the tensors  and ijn ijδ  are orthogonal, 

, this operation results in orthogonal correction terms 
for the case of isotropic elasticity:  

0=ijijn δ
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Figure 3 shows the construction of the new stress tensor ijσ .on 

the new yield surface from the old value  on the initial yield 
surface. 

0
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Fig. 3 construction of new stress tensor during yielding 

 
The stress tensor can be separated into deviatoric and hydrostatic 
components: 
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and for consistency with Eq. (11), 
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where  is the elastic-predictor deviatoric stress tensor 

corresponding to . Eq. (13a) shows that the correction 
represents a return to the yield surface in deviatoric stress space 
in the negative direction of the vector . This observation 

means that , the deviatoric stress tensor  , and the elastic-

predictor deviatoric stress tensor  must be co-axial with each 
other. 
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and Eq. (13a) can be written in equivalent stress form: 
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Equivalent plastic strain and void volume fraction 

The void volume fraction  represents the number and size of 
micro-voids in the material. This is one of the state variables in 
the model. The other state variable is the equivalent plastic strain 
in the fully dense, undamaged material, . This is a 
microscopic internal property and should not be confused with 

, which is a macroscopic property representing the equivalent 
plastic strain in the damaged material. 

f

p
eqMε

p
eqε

 The principle of equivalent work may be used to calculate 
the increment of the equivalent plastic strain in the fully dense 
material, . The increment of plastic work per unit volume 
is [11]: 
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so, using Eq. (4) to substitute for  and Eq. (12) to substitute 

for 
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 The evolution of micro-voids in the material can be 
considered to be the sum of terms representing the nucleation of 
new micro-voids and the growth of existing micro-voids: 
 

grnuc fff Δ+Δ=Δ  (18) 

 
The nucleation of new micro-voids depends on the plastic strain 
in the material. The rate at which new micro-voids nucleate is 
proportional to the equivalent plastic strain rate in the fully dense 
material. This can be written 
 

p
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where A  is a constant that is chosen so that the strain required 
for nucleation follows a normal distribution with mean Nε  and 

standard deviation : Ns
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In Eq. (20),  represents the void volume fraction due to 
nucleating particles. 

Nf

 The growth of existing voids is governed by the requirement 
that the volume of the material matrix is constant during plastic 
straining: 
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The total increase in the void volume fraction due to nucleation 
and growth of micro-voids is therefore, by adding Eq. (19) and 
Eq. (21): 
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SOLUTION OF GTN CONSTITUTIVE EQUATIONS 
The state of stress and strain and the ductile damage can be 
calculated if the values of the scalars , , , p

eqεΔ p
mεΔ eqσ mσ , fΔ  

and  can be determined. These six scalars may be obtained 
as the solution of Eqs. (1), (6), (13b), (15), (17), and (22). Once 
the equations have been solved, the stress and strain tensors can 
be obtained simply: 

p
eqMεΔ

 
 The stress tensor can be calculated from Eq. (11) or (12). 

 
 The increment in the plastic strain tensor  can be 

calculated using Eqs. (4) and (5d). 

p
ijεΔ

 
 The increment in the elastic strain tensor  can be 

obtained by Eq. (7). 

e
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Simplification and re-arrangement of equations 
The number of equations can be reduced to four,  simplifying the 
problem, by using Eqs. (13b) and (15) to substitute for and 
eliminate mσ  and eqσ  from the other equations. In this paper, 
this substitution is done implicitly: that is, we retain the terms 

mσ  and eqσ in all expressions on the understanding that Eqs. 
(13b) and (15) can to be used to eliminate them. Computationally,  
implicit substitution corresponds to the use of intermediate 
variables to represent the von Mises and hydrostatic stresses. 
 The four key equations that must be solved can now be 
collected together. For convenience the equations are re-written 
in the standard form  where f  is a vector of functions. 0f =
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These equations are of the form developed by Aravas for a 
general class of pressure-dependent plasticity models [12]. 
Aravas suggests solving the first two equations for ,  

(and 

p
eqεΔ p

mεΔ

eqσ , mσ  by implicit substitution). Newton’s method is 
suggested for solving the two equations. As values of the state 
variables  and  are required for each iteration of 
Newton’s method, Aravas suggests these be obtained by solving 
Eqs. (23c) and (23d) as a separate nested, sub-problem, again by 
making use of Newton’s method. There are a number of 
difficulties with Aravas’s method: 

fΔ p
eqMεΔ

 
• Newton’s method may not converge, or may converge 

to an incorrect solution. 
 

• The use of nested applications of Newton’s method 
means that many iterations are required to obtain a 
solution. Experimentation with the procedure shows 
that 10-20 iterations are typically required to solve the 
main problem, Eqs. (23a)  and (23b), each requiring 10-

20 iterations to solve the sub-problem, Eqs. (23c) and 
(24d). Thus, up to 400 iterations on the sub-problem 
might be required. 

 
• Newton’s method requires partial derivatives of the 

functions with respect to each of the unknown 
variables. For the main problem, these expressions must 
take into account the coupling with the state variables 
in the sub-problem. The equations for doing this are 
provided by Aravas but require that a particular 2×2 
matrix be non-singular and inverted at each iteration 
step. 

 
• For some values of ,  that are selected as trial 

values by Newton’s method, the sub-problem might 
have no solution. 

p
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These problems mean that small increments must be taken to 
ensure a correct solution is achieved.  
 
Solution by a trust region method 
In this section an iterative method for solving the four equations 
as one set is described. The method makes use of Newton’s 
method in the latter stages of the iteration, when the estimate of 
the solution is close to the true solution, but uses a more cautious 
approach for the initial iterations. For convenience, the unknown 
quantities are collected into a vector x : 
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Given an approximation to , Newton’s method gives a new 
approximation by adding a correction step h  obtained by solving 
a linear system: 
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Successive iteration on Eqs. (25) is used to obtain a solution to 
the desired accuracy. However, depending on the nature of  the 
iteration may fail to converge or converge on the wrong solution, 
especially if the initial approximation for x  is far removed from 
the true solution. 
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 The matrix J  is the Jacobian, calculated from the partial 
derivatives of the functions with respect to each of the unknown 
variables: 
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The solution of Eqs. (23) is also the global minimiser for the sum 
of squares of the function values, : ( )xF
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Hence, instead of solving Eqn. (25a), a correction  can be 
obtained by minimising the sum of squares of 
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The value of  which minimises Eq. (28) can be obtained using h
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the method of steepest descent. The direction in which ( )xF  
decreases most rapidly is calculated using: 
 

( ) ( ) ( )xfxJxh T
sd F −=−∇=  (29) 

 
The step size which minimises Eq. (28) is of the form sdhα  

where α  is a scalar. Substituting sdhh α=  in Eq. (28) gives: 
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The solution method we have adopted uses the steepest descent 
direction in the initial stages of the iteration, and switches to 
Newton’s method in the final stages. At each iteration, the 
correction  is constrained to lie within a 4-dimensional trust 
region or ‘ball’ in the space of x  of radius . At intermediate 
iterations, a hybrid step, consisting of part steepest descent step 
and part Newton step, is calculated using Powell’s dogleg 
method. The correction  is determined as follows: 

h
Δ

dlh
 

• If Newton’s step lies inside the trust region, this is used, 
. ndl hh =

 
• If the steepest descent step sdhα  lies inside the trust 

region but Newton’s step  lies outside, a hybrid step 
is taken to the boundary of the trust region (see below). 

nh

 
• If both the steepest descent step sdhα  and Newton’s 

step  lie outside the trust region, the steepest descent 
is used, but is scaled to the boundary of the trust region, 

nh

( ) sdsddl hhh Δ= . 

 
The algorithm is shown in Fig. 4. 
 

 

if Δ≤nh  then 

      ndl hh =  Newton step 
else 
      Calculate sdh , sdh  and α  

      if Δ≥sdhα  then 

            ( ) sdsddl hhh Δ=  steepest descent step 
      else 
            Calculate difference vector sdn hhv α−=  

            Calculate scalar β  such that Δ=+ vh βα sd  

            vhh βα += sddl  hybrid step 
      end if 
end if 
 

 
Fig. 4. Algorithm for determining constrained hybrid step hdl

 
In each case, the step is not allowed to go outside the trust region, 

Δ≤dlh .  

 Powell’s dogleg algorithm is used to determine the hybrid 
steps. A typical hybrid step is illustrated in Fig. 5. The value of 
β  in Fig. 4 is the fraction of the difference sdn hh α−  that must 

be added to sdhα  to give a step to the boundary. This can be 
obtained by setting the length of the step to  and taking the 
positive solution of the resulting quadratic equation. 

Δ

 

4-dimensional 
trust region

hdl
αhsd

hn

hn-αhsd

Δ

 
Fig. 5 Illustration of a dogleg correction step 

 
Once the correction step  has been determined, a gain ratio 

dlh ρ  

is calculated, which is the ratio of the actual decrease in ( )xF  to 
the predicted decrease, and measures the quality of the step: 
 

( ) ( )
( ) ( )dl

dl

LL
FF

h0
hxx

−
+−

=ρ  (32) 

 
When ρ  is positive, the step is good and a new estimate of the 
solution vector is calculated using Eq. (25b). In this case, the trust 
region is expanded by a factor that depends on ρ . When ρ  is 
zero or negative, the step is rejected, the radius of the trust region 
is reduced, and a new step is determined by a repeated application 
of the algorithm in Fig. 4. 
 Figure 6 shows the algorithm used to control the radius of 
the trust region. 
 

 
if 0>ρ  then 

      

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−

Δ
=Δ

3121,
3
1max ρ

 expand region 

      2=μ  
else 

       
( )
μ

dlh,min Δ
=Δ   shrink region 

       μμ 2=  
end if 
 

 
Fig. 6. Algorithm for changing radius of trust region 

 
The trust region shrinks and expands during the iteration as it 
adapts to the quality of each step. The iteration can be stopped 
when the solution has been found to sufficient accuracy or when 
the trust region is very small. 
 
EXAMPLE CALCULATIONS 
Some example calculations illustrating the use of the model are 
presented in this section. To provide a comparison of the results 
with the porous plasticity model in ABAQUS/Standard the 
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coalescence effect was turned off by setting  = 1 and  = 2 

so that . 
cf ff

ff =*

 The first calculation considers a single volume element in 
hydrostatic tension, with an equal displacement applied to each of 
the three orthogonal directions. The volume element, boundary 
conditions and applied displacement constraints are shown in 
Fig. 7. 
 

 
Fig. 7. Single 3D element in hydrostatic tension 

 
The material properties were taken from Aravas’s paper [12]. A 
power-law representation for  was used of the form: ( p

eqMεσ 0 )
 

N

p
eqM

PLPLPL

G
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ε
σσ

σ
σ
σ 300  (33) 

 
with E  = 2GPa, ν  = 0.3, PLσ  = 667MPa, and  = 0.1. 

Nucleation of voids was defined with  = 0.04, 

N

Nf Nε  = 0.3,  = 

0.1. The Tvergaard constants in the yield function were  = 1.5, 

 = 1. An initial void volume fraction of 0.04 was assumed. 

Ns

1q

2q
 
 Figures 8 and 9 show results for PLm σσ  and void volume 

fraction respectively as a function of the volumetric strain iiε . 
Excellent agreement was obtained with the results of Aravas [12] 
and with the use of the ABAQUS/Standard porous plasticity 
model. 
 

 
Fig. 8. Plot of PLm σσ  against volumetric strain iiε . 

 
 

 
Fig. 9. Plot of  against volumetric strain f iiε . 

 
The second calculation presented is an analysis of an 
axisymmetric bar in tension. Fig. 10 shows the mesh. Only one 
half of the bar was modelled due to symmetry, the length of the 
half-bar was  = 26mm. The radius of the bar was  = 3mm. wl wr
 

 
 

Fig. 10. Finite element model of round bar 
 
A neck was introduced at the mid-plane by moving node 1135 
inwards to a radius of  = 2.995mm. A displacement was 
applied to node 8311 at the top of the model (nodes 8411, 8511, 
etc running along the top of the model were constrained to 
displace vertically with node 8311.) 

ar

 For the material model, E  = 2.1GPa, ν  = 0.3, PLσ  = 

468MPa, and a look-up table was used to prescribe ( )p
eqMεσ 0 . 

Void nucleation was turned off using  = 0.0, Nf Nε  = 0.0,  = 

0.1. The Tvergaard constants in the yield function were  = 1.5, 

 = 1. An initial void volume fraction of 0.002 was assumed. 

Ns

1q

2q
 Figures 11 and 12 show the load applied to the top of the bar 
as a function of the average axial strain and the contraction at the 
symmetry plane respectively. The load in each case has been 
normalised with respect to the elastic limit stress and the cross-
sectional area of the specimen.  
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Fig. 11. force/( ) versus PLwr σπ 2

wlu8311
2  

 

 
Fig. 12. force/( ) versus PLwr σπ 2

aru1135
2  

 
Good agreement was obtained with the ABAQUS porous 
plasticity model. 
 Element 1111 represents the mid-centre of the bar, where the 
voids would be expected to grow fastest and where fracture 
would ultimately occur. Figure 13 and 14 show the hydrostatic 
stress and void volume fraction respectively in element 1111 as a 
function of volumetric strain. The hydrostatic stress increased to a 
peak value and then decreased again. The void volume fraction 
increased continuously. Good agreement was obtained with the 
ABAQUS porous plasticity model, except for a small discrepency 
at about iiε  = 1.1 in each figure. 
 

 
 

Fig. 13.Plot of PLm σσ versus volumetric strain iiε  

 
Fig. 14. Plot of void volume fraction versus 

volumetric strain iiε  
 
 Figure 15 shows a contour plot of the void volume fraction 
at an average axial strain of wlu8311

222 =ε = 6 × 10-3. The result 
obtained using the ABAQUS porous plasticity model is shown on 
the left. The GTN model result is shown on the right. The small 
differences are due to different increments being matched to the 
average strain value in each case. It can be seen that the model 
correctly predicts the concentration of voids at the centre of the 
bar. 
 

 
Fig. 15.Contour plots of void volume fraction 

 
CONCLUSIONS 
The constitutive equations for the Gurson-Tvergaard-Needleman 
model for ductile damage have been presented in this paper, 
along with a description of a suitable trust region algorithm that 
can be used to solve the equations. This solution method has 
proved to be robust and efficient. 
 The model has been implemented as a Fortran 90 user 
material subroutine for use with ABAQUS/Standard. The 
subroutine allows the user to modify the yield surface to account 
for increased softening at large values of void volume fraction, 
due to void coalescence. 
 Example calculations are provided showing the results of 
applying the model to an axisymmetric bar. The analysus 
assumed no void coalescence and the results were comparable 
with those obtained using the porous plasticity model in 
ABAQUS/Standard. 
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APPENDIX – LINEARISATION MODULI 
The linearisation are required for implementation of the backward 
Euler method in the Finite Element solver. They are provided in 
this Appendix without proof. The equations can be obtained by 
considering variations of stress and strain increments in Eqs. (1) 
and (6). 
 The linearisation  moduli tensor  is calculated using: ijklD
 

( ) 11 −− += ijklijklijkl MED  (34) 

 
where  is the elasticity tensor, Eq. (9), and  is the 
tensor: 

ijklE ijklM

 
( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ −−

Δ

++++=

klijklijjlik
eq

p
eq

klmnmnklmnmnijkl

nn

nnMMnMMM

δδδδ
σ
ε

δδδ

2
1

2
3

22211211

 (35) 

 
with 
 

21122211

,33,3,3

AAAA
BABA

M jiiiijii
ij −

−
= −−−−   (36) 

 
The coefficients  and  are calculated using: ijA ijB
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In Eqs. (37), , ,  is the function on the 

right-hand side of Eq. (17), and  is the function on the right-

hand side of Eq. (21). The tensor 

p
eqMH εΔ=1 fH Δ=2 1h

2h

β

α
αβαβ δ

H
hc

∂
∂

−= . 
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